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Abstract. The size of π+π− atom in the low lying states is considerably smaller than the radius of atomic
screening. Due to that we can neglect this screening calculating the contribution of multi-photon exchanges.
We obtain the analytic formula for Coulomb corrections which works with a very good accuracy for the
ground state of π+π− atom.

The proposed accurate measurement of the π+π− atom
(dimesoatom) lifetime in the experiment DIRAC [1] would
give important information about the low energy QCD dy-
namics. Dimesoatom can be detected in the experiment of
a such type due to its (electromagnetic) interaction with
the target matter (ordinary atoms). After this interaction
dimesoatom can remain intact (elastic scattering), be ex-
cited in another quantum state (excitation) or to disinte-
grate (ionisation).

In this paper we will concentrate ourselves on the total
cross section which is the sum of the total cross sections of
elastic, excitation and ionisation. Total cross section, due
to the optical theorem, is related to the imaginary part of
the forward elastic scattering amplitude. At high energy
it is given by the diagrams of Fig. 1 with the even number
N = 2n of photon exchanges in the t- channel.

In the Born approximation this process was considered
in [2]. The contributions of the diagrams with multiphoton
exchanges n > 1, Fig. 1(b), is important for an atom hav-
ing large Z due to the strong Coulomb field of the nucleus.
The expansion parameter ν = Zα is not small in the case
of the atom with large charge Z, therefore the contribu-
tion of all diagrams at Fig. 1 should be summed to achieve
the exact result. Note that we consider here heavy atom
as a projectile, or in other words, its quantum state does
not change during the interaction. The grounds for this
approximation will be discussed in the end of the paper.

When our paper was under preparation we learned
about the paper [3] in which a similar ideas about the dom-
inance of small transverse distances region to Coulomb
corrections were proposed. Technically our method is dif-
ferent from that one used in [3], it looks for us more
straightforward. Here we reproduce the result of [3], see

our (12-15). Also we calculate the first correction to this
result, see (29). It gives a possibility to estimate the ac-
curacy of analytical approach and expand its applicability
region from ground to low lying states of dimesoatom.

Let us divide the total cross section into two parts

σ = σBorn + σCoulomb , (1)

where σBorn is given by the contribution of the lowest or-
der two photon exchange amplitude only, see Fig. 1(a),
σCoulomb describes the contribution of the diagrams
Fig. 1(b) with n > 1 and their interference with the Born
amplitude, Fig. 1(a).

It is known that the sum of type Fig. 1 diagrams in
high energy kinematics is equivalent to the eikonal ap-
proximation. Recently this process was considered in the
eikonal approach in [4]. In our note we would like to
emphasize the physical picture underlying this process.
Namely we discuss the hierarchy of transverse distances
relevant for various contributions to the cross section:
σBorn and σCoulomb. In contrast to Born part, Coulomb
correction receives the main contribution from the small
distances where the electromagnetic field of atom is deter-
mined by the Coulomb field of nuclei. Therefore σCoulomb
can be calculated with high precision since the details
of atomic screening in this case are of a small impor-
tance. Our consideration will be very similar to that in
[5], where the closely related problem, lepton pair photo-
production in a strong Coulomb field, was considered. We
derive the analytical formula which gives with good accu-
racy σCoulomb for the ground state and describes qualita-
tively low lying dimesoatom states.

Electromagnetic field of atom consists of the field of
nucleus and the field of electron shell. The nucleus field is
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Fig. 1. Feynman diagrams describing the electromag-
netic interaction of dimesoatom with the target atom:
a) Born approximation, b) multiphoton contributions

screened by the electron shell at large distances

r ∼ rA =
1

meαZ1/3
. (2)

At very small distances

r ≤ rN =
1
Λ
,Λ ≈ 30 MeV , (3)

electromagnetic field depends on the distribution of elec-
tric charge inside nucleus. There is very broad region

rN < r < rA (4)

where electromagnetic field of atom coincides with the
Coulomb law Zα

r .
The other important for our problem dimensional pa-

rameter is the distance between π+ and π− in dime-
soatom, which is in a good approximation positronium–
like weakly bound state,

r2π ∼
2

mπα
. (5)

It is important to note that this parameter lies in between
of the parameters describing atomic and nuclear screening

rN << r2π << rA . (6)

Let us discuss now the relevant transverse momenta
< ki > in the integrals describing the diagrams at Fig. 1,
and therefore, the important for our process transverse
distances r ∼ 1/ < ki > between nucleus and high en-
ergy dimesoatom. These < ki > are different for the var-
ious contributions to the cross section. Calculating Born
part σBorn we meet the logarithmic–type integral collect-
ing from the region

1
rA

≤ < k1,2 > ≤
1
r2π

. (7)

Therefore large distances, r ∼ rA, where the Coulomb
field of nucleus is screened by the electron shell give size-
able contribution to the σBorn. On the other hand
< ki >∼ 1

r2π
in the case of Coulomb contribution to the

cross section and hence the typical transverse distances for
σCoulomb are of order of the dimesoatom size r2π. Since
there is a large gap between this size and rA and rN
in calculation of σCoulomb we can safely neglect the nu-
clear screening and with a good approximation the atomic
screening. The accuracy of this approximation will be dis-
cussed later.

The total cross section for the interaction of dimesoatom
with the target atom can be most easily obtained by ex-
ploiting the similarity between the cross section for this
process (treating both π mesons as point like particles)
and the cross section for the lepton pair production by an
incident high-energy photon in a strong electromagnetic
field of a nucleus. This lepton pair production occurs also
via the multi-photon exchanges, analogous to those shown
in Fig. 1 (with π+, π− mesons replaced by corresponding
leptons). The total cross section for this process was cal-
culated in [5] by direct summation of the perturbative
series (see (48), (49), (52)). In order to make this above
mentioned similarity between the both processes more ex-
plicit let us concentrate ourselves on e.g. the cross section
for the lepton pair production by longitudinaly polarized
incident photon σS . (The similar analysis can be of course
performed in the case of transversely polarized photon.)
This cross section σS is given in [5] by (49) and the first
(52) (in which we do not subtract for this discussion the
contribution of one photon exchange, i.e. we omit the last
term on the r.h.s. of (52)). We can put this result in the
form

σS =2Reα

1∫
0

dx

2π2
d2x1 d

2x2 4Q2x2(1− x)2K2
0 (µ|x1 − x2|)

×
[

1−
(
x2

1

x2
2

)iν]
(8)

where α is the fine structure constant, Q2 is the virtuality
of photon, xi, i = 1, 2, are the impact parameters of the
leptons, the integration variable x is the fraction of longi-
tudinal momentum of the pair carried by lepton (1−x – by
antilepton), µ2 = m2 +Q2x(1−x), where m is the mass of
the lepton, and K0 is the modified Bessel function. Let us
note, that since at high energy the diagrams with photon
exchanges in the t- channel lead to the forward scattering
amplitude proportional to the square of the scattering en-
ergy, the cross section itself (due to the optical theorem)
does not depend on the scattering energy.

The physical meaning of the expression (8) can be
made transparent if we introduce the square of the light-
cone wave function of the fluctuations of a longitudinaly
polarized virtual photon into lepton pair [6]
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|ψS(x, |x1 − x2|)|2 =
2α
π

4Q2x2(1− x)2

×K2
0 (µ|x1 − x2|) , (9)

and the eikonal phases related to the Coulomb potential
of the target atom

χ(x) = −ν ln µ̄2|x|2

=
1
π

∫
d2 k eikx

ν

k2
=

∞∫
−∞

dz
ν√

x2 + z2
, (10)

here µ̄ is an infrared cutoff. Using expressions (9) and (10)
we can write the cross section (8) as

σS = 2Re

1∫
0

dx d2 x1 d
2 x2

4π
|ψS(x, |x1 − x2|)|2

× [1− exp (iχ(x2)− iχ(x1))] , (11)

or after introducing the new variables b = x1+x2

2 and
s = x1 − x2, in the equivalent form

σS = 2Re

1∫
0

dx d2 s

4π
d2 b|ψS(x, |s|)|2

×
[
1− exp

(
iχ(b− 1

2
s)− iχ(b+

1
2
s)
)]

. (12)

We see therefore that the cross section (12) is given as a
convolution of the square of the wave function for lepton
pair fluctuation of the photon with the eikonal amplitude
describing the multi-photon exchanges between the lep-
tonic lines and the target atom. This structure of the cross
section is well known from the Glauber theory which we
recover in this case. On the basis of this observation we can
write the cross section for the interaction of dimesoatom
with the target atom in a similar form

σnlm = 2 Re
∫
d2b d3r|ψnlm(r)|2

× [1− exp (iχ(b− s/2)− iχ(b+ s/2))] . (13)

Here s = r⊥ is the projection of the vector r on the plane
perpendicular to the collision axis, the impact parame-
ter of dimesoatom is b, ψnlm(r) is the wave function of
π+π− atom in the state with principal, orbital and mag-
netic quantum numbers n, l and m respectively. The phase
shift χ(b) is expressed via potential of the target atom
(compare (10)):

χ(b) =

∞∫
−∞

U(
√
b2 + z2 ) dz . (14)

This equation was derived in [7] and subsequently used in
the analysis of [4]. It serves also as the starting point for
our forthcoming analysis.

As we have seen already in (10), the difference between
the phase shifts of π+ and π− can be easily calculated in
the case of Coulomb potential. Therefore

σnlm = 2 Re
∫
d2b d3r|ψnlm(r)|2

×
[

1−
(

(b− s/2)2

(b+ s/2)2

)iν]
. (15)

This integral becomes convergent after the subtraction of
the Born contribution which is divergent in the case of
unscreened Coulomb potential.

σCoulombnlm = 2 Re
∫
d2b d3r|ψnlm(r)|2

×
[
1−
(

(b− s/2)2

(b+ s/2)2

)iν
− ν2

2
ln2

(
(b− s/2)2

(b+ s/2)2

)]
.

(16)

After the substitution b → s(R − n), where n = s
s , the

integral in (16) factorizes, see also [5].

σCoulombnlm = 〈s2〉Iν , (17)

where

Iν =
∫
d2R

{
2−

(
R2

(R− n)2

)iν
−
(

R2

(R− n)2

)−iν
− ν2 ln2

(
R2

(R− n)2

)}
(18)

and

〈s2〉 =
∫
d3rr2 sin2Θ|ψnlm(r)|2

= 〈r2〉(n,l)〈sin2Θ〉(l,m) (19)

The integral Iν was calculated in [5]

Iν = −4πν2f(ν),

f(ν) =
1
2

[Ψ(1− iν) + Ψ(1 + iν)− 2Ψ(1)], (20)

where Ψ(z) = d(lnΓ (z))/dz. Note that the dependence of
the σCoulomb on Z factorizes from the variables describ-
ing the state of π+π− atom. It is given by the universal
function f(ν).
〈r2〉(n,l) for the positronium–like states is given by [8]

〈r2〉(n,l) =
(

2
mπα

)2
n2

2
[5n2 + 1− 3l(l + 1)] (21)

We will consider for simplicity the cross section averaged
over the magnet quantum number:

σnl =
1

2l + 1

∑
m

σnlm . (22)
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In this case
〈sin2Θ〉 = 2/3 . (23)

Taking into account all factors we find the result

σnl = σBornnl + σCoulombnl

σCoulombnl = −16πν2f(ν)
m2
πα

2

n2

3
[5n2 + 1− 3l(l + 1)] .(24)

Note that σCoulomb is proportional to r2
2π, the mean square

of the distance between π+ and π− in the dimesoatom. r2
2π

grows rapidly, ∼ n4, with increasing n for weakly bounded
dimesoatom. At n ∼ 4 the distance between π+π− be-
comes of the order of the radius of atomic screening rA
for atom with large Z. Therefore our approach based on
the large difference between r2π and rA can not be applied
to the highly excited states of dimesoatom.

The first correction related to appearance of the atomic
screening can also be calculated analytically. In order to
evaluate it let us replace the denominator of the photon
propagator by

1
k2 →

1
k2 + µ2

, (25)

where µ is the inverse of the radius of atomic screening
rA. This replacement leads to the analog of the formula
(16) having now the form

σCoul.+Atom.Scr.nlm = 2 Re
∫
d2b d3r|ψnlm(r)|2

×
[
1− e2iν[K0(µ|b− s2 |)−K0(µ|b+ s

2 |)]

− 2ν2[K0(µ|b− s
2
|)−K0(µ|b+

s

2
|)]2
]
,

(26)

where K0(z) is the modified Bessel function.
The first correction due to the atomic screening can be

obtained from (26) by taking into account that for small
values of µ

K0(µ|b− s
2
|)−K0(µ|b+

s

2
|) = ln

|b+ s
2 |

|b− s
2 |

+
µ2

4

[
(|b− s

2
|2 − |b+

s

2
|2)Ψ(2)

+ |b+
s

2
|2 ln

µ|b+ s
2 |

2
− |b− s

2
|2 ln

µ|b− s
2 |

2

]
, (27)

and keeping terms proportional to µ2. In this way we ob-
tain

∆σAtom.Scr.nlm = −2µ2 Re
∫
d2b d3r|ψnlm(r)|2

×
[
iν

2
e

2iν ln
|b+ s2 |
|b− s2 | +

ν2

2
ln
|b+ s

2 |2
|b− s

2 |2
]
·

×
[
(|b− s

2
|2 − |b+

s

2
|2)Ψ(2) + |b+

s

2
|2 ln

µ|b+ s
2 |

2

− |b− s
2
|2 ln

µ|b− s
2 |

2

]
. (28)

The dominant contribution to this expression comes from
the region of values of b being much lager than the size
of the dimesoatom described by s = r⊥. In this limit we
obtain

∆σAtom.Scr.nlm ≈ 8
3
µ2ν4

∫
d3r

rA∫
r

d2b|ψnlm(r)|2 (bs)4

(b2)3

×
[
Ψ(2)− 1

2
ln
µ2b2

4
− 1

2

]
, (29)

and consequently with the logarithmic accuracy we can
write

∆σAtom.Scr.nlm ≈πµ2ν4

∫
d3r |ψnlm(r)|2 r4 sin4Θ ln2(µr).

(30)

This result can be generalized to the case in which
there appear a sum of several potentials, i.e. when instead
of (25) we perform the substitution

1
k2
→

N∑
i

ci
k2 + µ2

i

,

N∑
i

ci = 1 . (31)

This generalization includes, in particular, the Moliére [9]
parametrization of the Thomas-Fermi potential. In this
case the (30) generalizes to the formula

∆σAtom.Scr.nlm ≈ πν4

∫
d3r |ψnlm(r)|2 r4 sin4Θ

×
N∑
i

1
4
ciµ

2
i ln2(µ2

i r
2) . (32)

Since the derivation of (30) was performed with the log-
arithmic accuracy we are free to put in the argument of
logarithmic function in (32) some average value µ̄2 of the
square of masses µi. We choose as µ̄2 the quantity

µ̄2 =
N∑
i

ciµ
2
i . (33)

In this way we arrive to the final form of correction re-
lated to the atomic screening averaged over the magnet
quantum number m (see (22))

∆σAtom.Scr.nl ≈ 1
4
πν4

(
N∑
i

ciµ
2
i

)
1

2l + 1

l∑
m=−l

×
∫

d3r |ψnlm(r)|2 r4 ln2(µ̄2r2) sin4Θ

≈ 2
15
πν4

(
N∑
i

ciµ
2
i ) 〈r4〉n,l ln2(µ̄2〈r2〉n,l

)
(34)

The cross section under consideration is given by the sum
of terms

σnl = σBornnl + σCoulombnl +∆σAtom.Scr.nl , (35)
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Table 1. Predictions for (σBornnl − σnl)/σ
Born
nl based on the

analytic results in case of Tantalum and their comparison with
the numerical results of [4]

(24) (35) Fig. 2 of [4]

n = 1, l = 0 0.0851 0.08212 0.082
n = 2, l = 0 0.1321 0.1265 0.109
n = 3, l = 0 0.1962 0.1961 0.128
n = 4, l = 0 0.2846 0.1812 0.138

where σCoulombnl is given by (24) and (20), and ∆σAtom.Scr.nl
is given by (34).

Let us now present for the case of Tantalum (Z =
73) our predictions for (σBornnl − σnl)/σBornnl based on the
analytic results obtained above. The values of σBornnl for
different values of n and l = 0 we take from the first
column of the Table in [2]. The values of constants ci and
masses µi were derived by Moliére in [9] (see (7,1a) there)
and are equal

c1 = 0.35 c2 = 0.55 c3 = 0.1
µ1 = 0.3µ0 µ2 = 1.2µ0 µ3 = 6µ0 (36)

where µ0 =
meαZ

1/3

0.885
.

Our predictions based on (24) and (35) are presented in
the first two columns of Table 1.

Our analytic results we can compare with the results
of numerical calculations presented on Fig. 2 of [4], and
which are shown in third column of Table 1. These numer-
ical results are based on (13) and use in a course of the
calculations the explicit form of the pionium wave func-
tion (written in terms of the spherical harmonics and La-
guerre polynomials) and the Moliére parametrization of
the Thomas-Fermi potential given by (31) and (36).

We see that for the ground state of dimesoatom the
first atomic screening correction reduces practically to
zero the difference between result of our analytic calcu-
lations (24) and the result of numerical calculation of [4].
For the exited states this correction leads to decreasing of
this difference but the precision is low. Consequently, for
those states the analytic approach based on (24) or (35)
works only qualitatively.

We want still to add three additional remarks. First, let
us note that the nuclear screening can be really safely
neglected since the corresponding relative accuracy is very
high

∼
(
rN
r2π

)2

< 10−4 . (37)

Secondly, due to the fact that the values of muon and
pion masses are close to each other, our qualitative consid-
eration and its consequence given by (24),(34) are directly
applicable to the process of the breakup of µ+µ− atom.

Finally, we consider here an atom as a permanent
source of electromagnetic field or as a projectile. The
grounds of this approximation can be understood if we
compare the estimates for the time of the interaction of
pionium with an atom with the internal atomic time. The
interaction time ∼ 1/(mπα) is much shorter than the in-
ternal atomic time ∼ 1/(meα

2Z4/3). An atom will re-
main in the initial state during the time of interaction,
the change of its quantum state and therefore its elec-
tromagnetic field will occur only after a time of order of
internal atomic time, therefore we can consider an atom
as a permanent source of electromagnetic field.
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